Phosphorus mobilizing consortium Mammoth P™ enhances plant growth
نویسندگان
چکیده
Phosphorus (P) is a critical nutrient used to maximize plant growth and yield. Current agriculture management practices commonly experience low plant P use efficiency due to natural chemical sorption and transformations when P fertilizer is applied to soils. A perplexing challenge facing agriculture production is finding sustainable solutions to deliver P more efficiently to plants. Using prescribed applications of specific soil microbial assemblages to mobilize soil bound-P to improve crop nutrient uptake and productivity has rarely been employed. We investigated whether inoculation of soils with a bacterial consortium developed to mobilize soil P, named Mammoth P(TM), could increase plant productivity. In turf, herbs, and fruits, the combination of conventional inorganic fertilizer combined with Mammoth P(TM) increased productivity up to twofold compared to the fertilizer treatments without the Mammoth P(TM) inoculant. Jalapeño plants were found to bloom more rapidly when treated with either Mammoth P. In wheat trials, we found that Mammoth P(TM) by itself was able to deliver yields equivalent to those achieved with conventional inorganic fertilizer applications and improved productivity more than another biostimulant product. Results from this study indicate the substantial potential of Mammoth P(TM) to enhance plant growth and crop productivity.
منابع مشابه
Arabidopsis Pht1;5 mobilizes phosphate between source and sink organs and influences the interaction between phosphate homeostasis and ethylene signaling.
Phosphorus (P) remobilization in plants is required for continuous growth and development. The Arabidopsis (Arabidopsis thaliana) inorganic phosphate (Pi) transporter Pht1;5 has been implicated in mobilizing stored Pi out of older leaves. In this study, we used a reverse genetics approach to study the role of Pht1;5 in Pi homeostasis. Under low-Pi conditions, Pht1;5 loss of function (pht1;5-1) ...
متن کاملPhytoextraction of heavy metal polluted soils using Sedum plumbizincicola inoculated with metal mobilizing Phyllobacterium myrsinacearum RC6b.
The aim of this study was to investigate the effects of metal mobilizing plant-growth beneficial bacterium Phyllobacterium myrsinacearum RC6b on plant growth and Cd, Zn and Pb uptake by Sedum plumbizincicola under laboratory conditions. Among a collection of metal-resistant bacteria, P. myrsinacearum RC6b was specifically chosen as a most favorable metal mobilizer based on its capability of mob...
متن کاملNitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems.
• Biologically essential elements--especially nitrogen (N) and phosphorus (P)--constrain plant growth and microbial functioning; however, human activities are drastically altering the magnitude and pattern of such nutrient limitations on land. Here we examine interactions between N and P cycles of P mineralizing enzyme activities (phosphatase enzymes) across a wide variety of terrestrial biomes...
متن کاملاثر فسفر و ماده آلی بر روابط فسفر خاک- گیاه در اسفناج
To determine the effect of application of phosphorus (P) and organic matter on soil-plant P relationship at different growth stages of spinach, an experiment was conducted at greenhouse conditions. Treatments consisted of two levels of organic matter (0 and 2% of sheep manure) and three levels of P as Ca(H2PO4)2 (0, 20 and 60 mg P kg-1soil). Soil and plant samples were collected at five growth...
متن کاملEffect of mycorrhiza application on plant growth and yield in potato production under field conditions. Zohrab Adavi 1*and Mahmoud Reza Tadayoun 2
The effect of mycorrhiza fungi was studied on growth and yield of potato (Solanum tuberosum L.) in Fereidoonshahr, Esfahan, Iran during 2013 growing season. The experiment treatments were arranged in a factorial design based on a complete randomized block design with three replications. Four phosphorus fertilizer levels of 25%, 50% 75% and 100% P recommended with two levels of Mycorrhiza: with ...
متن کامل